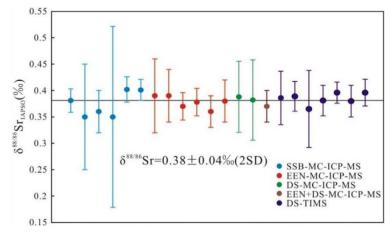
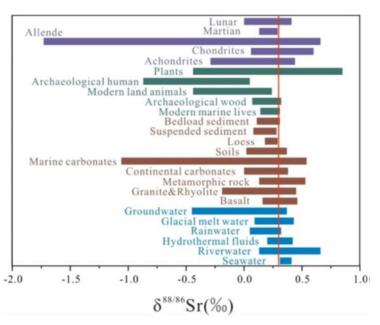
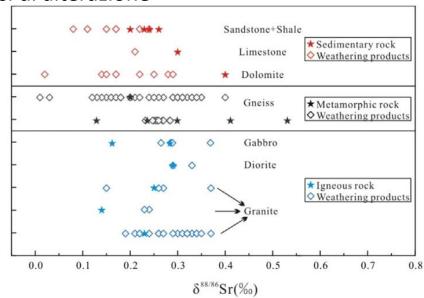

Isotopi stabili non-convenzionali. Isotopi del cromo, esempi di applicazione



Oltre agli isotopi stabili «tradizionali» (e.g. H, C, O, N, S), gli isotopi stabili «nontradizionali» di metalli e metalloidi trovano ampia applicazione in campo geologico, ambientale e biomedico



$\delta^{88/86}$ Sr: un esempio di sistematica isotopica <u>non-tradizionale emergente</u>

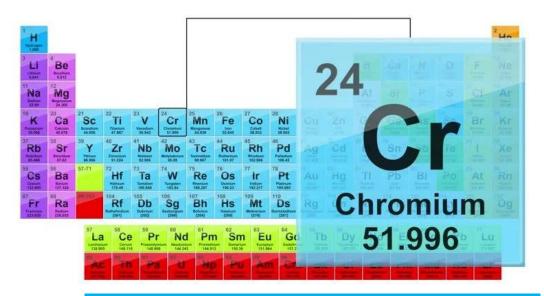


Sample-Standard Bracketing (SSB) Empirical External Normalization (EEN) Double-Spike techniques (DS)

 $\delta^{88/86}Sr = \begin{bmatrix} \left(\frac{88_{Sr}}{86_{Sr}}\right)_{campione} \\ \left(\frac{88_{Sr}}{86_{Sr}}\right)_{SRM987} \end{bmatrix} x 1000$ Apatite
Titanite
K-feldspar
Plagioclase
Hornblende
Chlorite
Epidote

Processi di alterazione

 $\delta^{88/86} Sr(\%)$

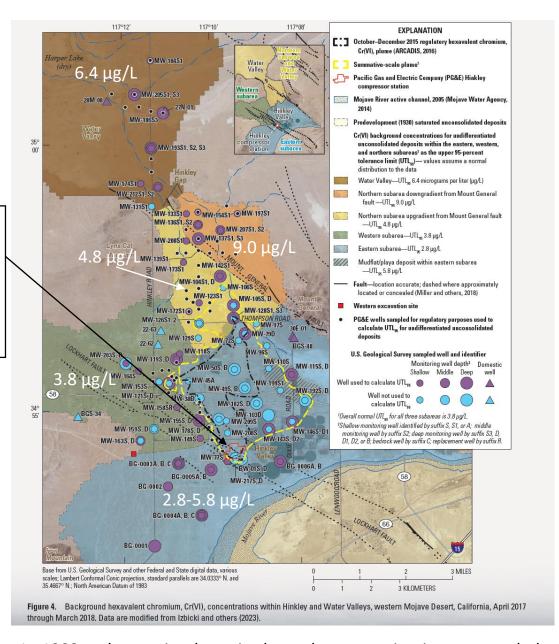

Il cromo (Cr) è un metallo della prima serie di transizione.


Il Cr ha sei stati di ossidazione (+2, +3, +6, +5, +4, +1).

Nelle matrici ambientali si trova prevalentemente nelle forme trivalente Cr(III) ed esavalente Cr(VI)

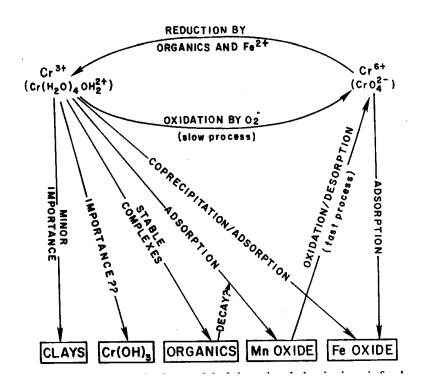
In presenza di donatori di elettroni [Fe(II), H₂S, materia organica ...] Cr(VI) ha tendenza spontanea a ridursi a Cr(III)

I composti del Cr(VI) nell'ambiente hanno semi-vita variabile da giorni a pochi anni



L'eredità della contaminazione da Cr(VI) a Hinkley (CA)

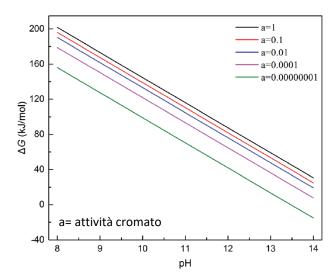
In the Pacific Gas and Electric Company (PG&E) Hinkley compressor station between 1952 and 1964, cooling water was treated with a compound containing hexavalent chromium, Cr(VI), to prevent corrosion of machinery within the compressor station.


Cooling wastewater containing Cr(VI) was discharged to unlined ponds and released into groundwater. Cr(VI) in water reached about 30 $\mu g/L$.

Since 1964, cooling-water management practices have been used that do not contribute chromium to groundwater.

In 1993 a class-action lawsuit about the contamination was settled in 1996 for \$333 million (around \$621 million in 2024)

Sorgenti e destino del Cr nell'ambiente



II Cr(VI) è solubile in fase acquosa; i composti di Cr(III) sono poco solubili* e con tendenza ad essere adsorbiti nel suolo

Process	Uncontrolled emissions, ppm	Oxidation state of Cr
Electroplating	trace-600	Cr(VI)
Metal pickling	600 ❖	Cr(VI)
Metal bright dip	10,000-50,000	Cr(VI)
Leather tanning	40	Cr(III)
Cooling tower blowdown	10-60	Cr(VI)
Animal glue manufacture	475-600	Cr(VI)
Textile dyeing	1	Cr(III)
Fur dressing and dyeing	20	Cr(III)
Laundry (commercial)	1.2	Cr(VI)

a Source: National Research Council of Canada (1976).

Il cromo trivalente può essere ossidato attraverso una serie di processi ed in una varietà di matrici e prodotti

Energia libera di Gibbs nella ossidazione di Cr(OH)₃, favorita in ambiente alcalino

^{*}i complessi organo-metallici di Cr(III) sono solubili in un ampio intervallo di pH

Il cromo nella forma trivalente è un elemento micronutriente essenziale; nella forma esavalente è tossico, provoca danni al DNA, è un agente cancerogeno.

Analisi di rischio: RfD: 5 µg/giorno/kg di peso corporeo

Il cromo esavalente è tra i Contaminants of Emerging Concern (CECs; EU)

Codice dell'Ambiente. CSC del cromo nelle acque (µg/L)

acque superficiali destinate alla produzione di acqua potabile

Cr tot <50

acque sotterranee

Cr tot <50

Cr(VI) <5

scarico in acque superficiali

Cr tot <2000

Cr(VI) <200

scarico in rete fognaria

<4000

<200

scarico acque reflue e urbane che recapitano sul suolo

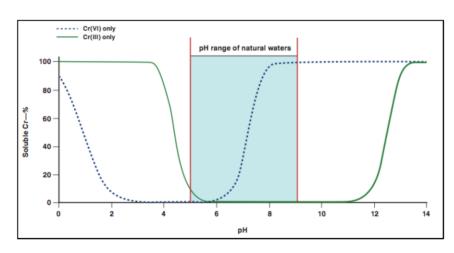
Cr tot <1000

Cr(VI) nelle acque destinate al consumo umano

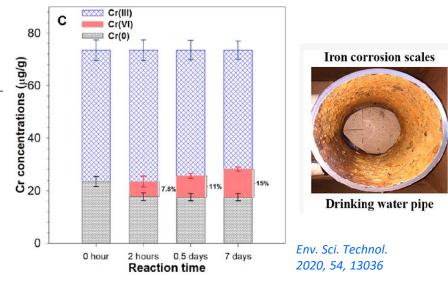
E' tolta la misura precauzionale di 10 μg/L prevista dal Decreto 14 novembre 2016 per il cromo esavalente, abrogato dopo sei proroghe 2016/2021.

Abrogando il Decreto 14 novembre 2016, i nuovi valori si allineano alla Direttiva (UE) 2020/2184 concernente la qualità delle acque destinate al consumo umano, che prevede l'adozione di un parametro per il Cr totale di 25 µg/L, da soddisfarsi entro il 12 gennaio 2036. Fino a tale data il valore di parametro è 50 µg/L.

Il Decreto 30 giugno 2021(*) porta il valore di parametro Cr totale a 25 μ g/L, in deroga fino al 12 gennaio 2026. Dal 1 luglio 2021 all'11 gennaio 2026 il valore è posto a 50 μ g/L


(*) "nell'ottica di perseguire la massima tutela per la salute umana e in ossequio al principio di precauzione, è appropriato anticipare al 12 gennaio 2026 l'entrata in vigore nel territorio nazionale del valore di parametro del cromo di 25 ug/L, previsto dalla Direttiva (UE) 2020/2184, rispetto al limite del 12 gennaio 2036 in essa stabilito".

Acqua potabile: ossidazione di Cr(III)-Cr(0)


La quantità di Cr(VI) ingerito attraverso l'acqua potabile è mediamente nell'intervallo $0.1-2~\mu g/L$. «Esiste circa il 40 % di probabilità di un incremento di Cr(VI) nell'acqua potabile a causa dei processi di disinfezione (USEPA)» per ossidazione del Cr(III) [es. Cr(OH)₃, Cr₂O₃, Fe_xCr_{1-x}(OH)₃] o Cr(0) presente nelle incrostazioni delle tubazioni

acido ipocloroso	$2Cr^{3+} + 3HOC1 + 5H_2O = 2CrO_4^{2-} + 3Cl^{-} + 13H^{+}$
clorammina	$2Cr^{3+} + 3NH_2Cl + 8H_2O = 2CrO_4^{2-} + 3NH_3 + 3Cl^{-} + 13H^{+}$
discoid a di alaua	$Cr^{3+} + 3ClO_2 + 4H_2O = CrO_4^{2-} + 3ClO_2^{-} + 8H^{+}$
diossido di cloro	$5Cr^{3+} + 3ClO_2 + 14H_2O = 5CrO_4^{2-} + 3Cl^{-} + 28H^{+}$
permanganato di K	$5Cr^{3+} + 3MnO_4^{-} + 8H_2O = 5CrO_4^{-2-} + 3Mn^{2+} + 16H^+$
permanganato unk	$Cr^{3+} + MnO_4^- + 2H_2O = CrO_4^{2-} + MnO_2 + 4H^+$
ozono	$2Cr^{3+} + 3O_3 + 5H_2O = 2CrO_4^{2-} + 3O_2 + 10H^+$

$$Cr_{0(s)} + 3HOCl + H_2O \rightarrow CrO_4^{2-} + 5H^+ + 3Cl^-$$

Cr(0) ha una reattività maggiore del Cr(III) nella formazione di Cr(VI) per clorazione

Contributi di Cr(0) e Cr(III) solidi nella formazione di Cr(VI) da HOCI

distribuzione di Cr(III) e Cr(VI) in acqua potabile contenente particelle di ferro

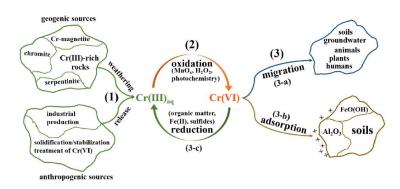
il processo è complesso, ad esempio per la competizione alla ossidazione di Cr data da Fe(II) e materia organica presente nelle incrostazioni, o per la presenza di catalizzatori

Codice dell'Ambiente

Suolo e sottosuolo



Colonna A


Cr(VI) 2 mg/kg Crtot 15 mg/kg

Colonna B

Cr(VI) 150 mg/kg Crtot 800 mg/kg

Sistema acqua-suolo

Ossidazione da H₂O₂, condizioni (generalmente) anaerobiche (pH>7.5)

$$3~H_2O_2 + 2~Cr^{3+} + 10~OH^- \rightarrow 2~CrO_4{}^{2-} + 8~H_2O$$

H₂O₂ è presente nelle precipitazioni ed è prodotta da una serie di processi in natura

serpentinizzazione

$$H_2 + O_2 \rightarrow H_2O_2$$
;

FeCr₂O₄ + 3H₂O + H⁺
$$\rightarrow$$
 2Cr(OH)₃ + Fe(OH)⁺; and
Cr(OH)₃ + H₂O₂ + 2OH⁻ \rightarrow CrO₄²⁻ + 3H₂O + 0.5H₂.

ossidazione della pirite

$${\equiv} Fe(III) \,+\, H_2O_{(ads)} {\,\rightarrow\,} {\equiv} Fe(II) \,+\, OH^{\bullet}_{\;\;(ads)} \,+\, H^+$$

zone di faglia

$2 \equiv \text{Si} - \text{O} \cdot + 2 \,\text{H}_2 \text{O} \rightarrow 2 \equiv \text{Si} - \text{OH} \cdot + \,\text{H}_2 \text{O}_2$

Ossidazione da MnO_x, condizioni (generalmente) aerobiche

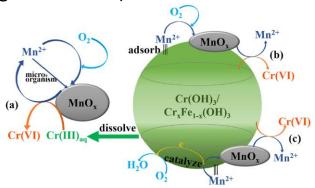


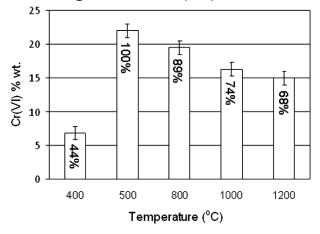
Fig. 2. The mechanisms of Cr(III) oxidation by MnO_x: (a) dissolved oxidation; (b) adsorbed oxidation; (c) catalyzed oxidation

$$Cr(OH)^{2+} + 1.5 \beta - MnO_2(s) \rightarrow HCrO_4^- + 1.5 Mn^{2+}$$

$$\text{Cr(OH)}^{2+} + 1.5 \ \delta - \text{MnO}_2(s) \rightarrow \text{HCrO}_4^{-} + 1.5 \ \text{Mn}^{2+}$$

$$Cr(OH)^{2+} + 3 MnOOH(s) + 3 H^{+} \rightarrow HCrO_{4}^{-} + 3 Mn^{2+} + 3 H_{2}O$$

$$Cr^{3+} + 1.5 \delta - MnO_2(s) + H_2O \rightarrow HCrO_4^- + 1.5 Mn^{2+} + H^+$$

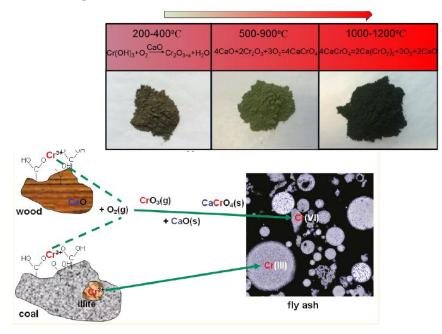

$$Mn^{2+}(aq) + O_2(aq) \rightarrow MnO_2(s)$$

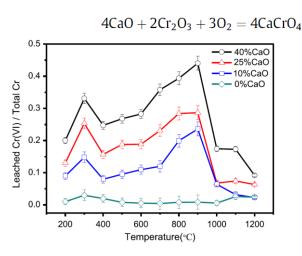
H₂O₂ reagisce con Fe²⁺ nelle acque di poro o con la superficie di minerali di ferro formando radicali ossidrili che sono forti ossidanti per Cr

$$H_2O_2 + Fe(II) \rightarrow OH^- + OH^- + Fe(III)$$

Sorgenti geogeniche: prodotti di incenerimento fanghi/combustione di carbone

La combustione di carbone e incenerimento di reflui e fanghi contenenti cromo genera Cr(VI)


formazione di Cr(VI) in funzione della temperatura di incenerimento


La pirolisi riduce ma non elimina la possibilità di formazione di Cr(VI)

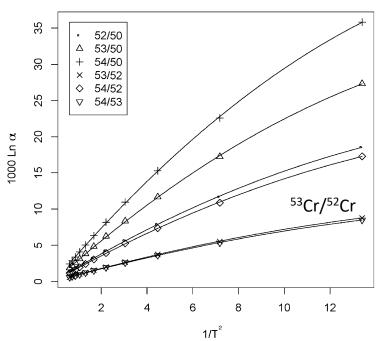
Percentage of Cr(VI) formed from Cr-ISW, which was thermally treated under anoxic conditions.

Temperature, °C	Duration, min	Cr(VI), wt%
400	20	n.d. ^a
400	60	n.d.
400	90	n.d.
400	120	0.9
500	30	0.1
500	60	0.3
600	20	1.2

a Not detected, i.e. Cr(VI) < 1.4 μg/kg.</p>

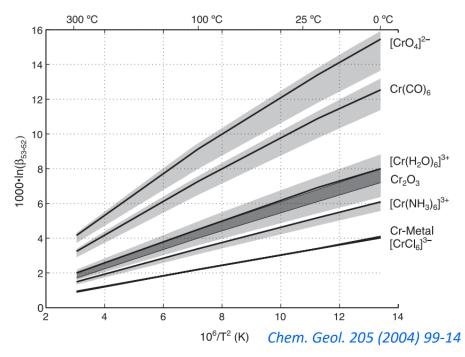
Il riutilizzo e stoccaggio di questi prodotti richiede attenzione

La sistematica isotopica del cromo


Il Cr ha 4 isotopi naturali stabili alle masse 50, 52, 53, 54

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Mn 54 3*	55.934940 Mo 5.5	56.935396		
0.38s β*6.61, β*6.61 γ.722 γ.783 β*3.54, β*6.61 γ.7491, β*3.54, β	21.1 m 5.59d 3.7 x10 ⁶ a 6.8*575 e 100 100 100 100 100 100 100 100 100 1	Mn 54 3"	Mass M		57.933278	E 1.565
2.772 1.783 1.763	y 1.434[].9355, A	312.2d 7.83484	Mn55 % 100 % 13.3, 14.0	Mn56 3+ 2.579h β-2.85,1.04, γ.84677,	Mn57 5/- 1.45 m 8-2.55, y.12206,.01441,	11" Mn58 2" 65s 3.0s 65s 3.8 66s 1 y .81077
E7.72 E 7.632 E 3.209 Cr 48 21.6h 42.1 m 61.42.1.54, 7.90064, 15293, 06229, E1.65 E 2627 V 47 31.3 m 61.42.1.54, 7.99064, 15293, 06229, E1.65 E 2627 V 49 15.98d 41.9907, 8	11,5178 7442,00	Ø _y <10			e-	1.3231,
21.6h #1.42.1.5m	E5.09 E4.712 E 596	E 1.377	54,938047	E 3.696	E 2.691	E 6.32
V 47 3/-3/-3/-31.3m 15.98d 3.31d 2.984 2.927 Ε 4.015 Ε 6.02 Τί 46 Τί 47 5/- Τί 48 7.3.8 σγ 1.7, 1.6 7.9.3.6 SC 45 100 σγ (10+17). (5+7) 1.14253 8.3.8d 8.3.34d 8.3.57. γ8.928. Γ. 12.054 γ.15.94 1.20.94 γ.15.94 γ.	Cr 51 7/- 27.70d 83.79 7.32008	Cr53 4 8, 950	Cr54 2.36 Vy .36, .18	Cr55 3/- 3.50m 8-2.50 y1.528,	Cr56 5.9m 5.1.5 7.0839,0266	Cr57 M= 21s 8-3.5,3.3 7.0834,890, 1.752,
31.3 m		52.940652	53.938883	E 2.603	E1.62	E~4.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V50 ° V 51 0.250 99.750 >3.9 × 10 ¹⁷ 6 97.7.733 67.7.733 E+2.237 67.4.610 E+2.237 67.9.610 8	V 52 3* 3.76 m 8-2.5, 71.43406,	V 53 %- 1.61 m β- 2.5, γ1006,	V 54 (5+) 49.8s β-3.0, γ.835, 989 2.259,	V55 6.5s β* 6.0, γ.5179, .8806,	V56
8.0 7.3 73.8 σ _{γ 1.7, 1.6} σ _{γ 7.9, 3.6} 73.8 σ _γ	49.947(6) 50.943969	E 3.976	E 3.436	E 7.04	£ 6.0	
Sc 45 100 18.7s 83.8d 3.34d 3.34d 3.34d 4.355910 18.7s 82.8d 7.1594 7.1594 7.1594 7.1594 7.1594 7.1594 7.1594 7.1594 7.1594 7.8	Ti49 % Ti50 5.4 % 1777, .11	Ti51 3/- 5.76m 8-2.14	Ti52 I.7m 8-1.8 y.12445, ,0170	Ti53 (3/1- 33s β-3.1, γ.(276, 2284, 1.676, 1008,	Ti54	
100 18.7s 83.8d 3.34d 3.	48.947871 49.944792	E 2.472	E 1.97	E 5.0		
44.955910 E2.367 E.601	43.7h 57.3m 8-65, 9131209, 98350, 1762, 1623	Sc50 (5)+ 1.71m p=3.69, y 1.554, 1.1210,	Sc5 (7/)- 12.4s 8-~5,4.4 71.437, 2.144,			
NAME AND ADDRESS OF THE OWNER, WHEN PERSON NAMED IN COLUMN 2 IS NOT THE OWNER,	1.03750,	.5235,				$\Gamma/53_{Cr}$
COAL COAL TO	E 3.99 E 2.005	The Real Property lies and the least lies and the lies and the lies and the least lies and the least lies and the lies and t	E 6.51			[(-6/)
Ca 44 2.086 6y.84(.59) Ca 45 165 d 165 d 7 01240 6y.77.59	Ca 47 " Ca 48	Ca 49 3/- 8.72m 8-2.18, 7 3.0844,		Ca51 10s 8- 7.8616, 1.394,		$\delta^{53}Cr = \left[\frac{\left(\frac{53_{Cr}}{52_{Cr}}\right)_{campione}}{\left(\frac{53_{Cr}}{52_{Cr}}\right)_{SRM979}} - 1\right]x1$
43.95548; € .257 45.953690	4.54d 0.187 y 1.297,		110000.0500.000000000000000000000000000	(n) ?		1 1 2 2 6 7

Table of Nuclides, General Electric


Frazionamento isotopico e stato di ossidazione

Frazionamento isotopico in reazioni di riduzione abiotica: all'equilibrio: 6-7 ‰; cinetico: 3.3-3.5 ‰

 $H^{\circ}CrO_{4\,gas}^{-} + {^{\bullet}Cr}\big(H_{2}O\big)_{6\ gas}^{3+} \Leftrightarrow H^{\bullet}CrO_{4\,gas}^{-} + {^{\circ}Cr}\big(H_{2}O\big)_{6\ gas}^{3+}$

Geochim. Cosmochim. Acta 69 (2005) 851-874

Funzioni di partizionamento ridotte calcolate per lo scambio ⁵³Cr-⁵²Cr (0-300 °C)

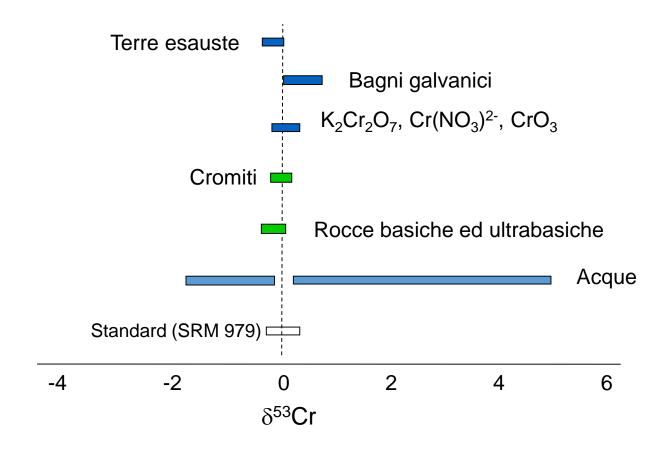
Nella riduzione l'isotopo pesante ⁵³Cr si partiziona preferenzialmente nella specie ossidata

I maggiori effetti di frazionamento sono associati alla riduzione del Cr(VI)

Fattore di frazionamento ϵ , riduzione abiotica


Reducing agents and experimental conditions	Initial concentration [Cr (VI)]	Fractionation type	ε (‰)
magnetite estuarine sediment pond sediment	$0.19 \times 10^3 \mu mol/L$	Rayleigh fractionation	-3.4
1.15 mmol/L Fe(II) aq	0.41 mmol/L	Rayleigh fractionation	-3.1
0.03 mmol/L Fe(II) aq	3.85 mmol/L	rady religit tractionation	-1.5
green clay-rich	$1.92 \times 10^3 \mu \text{mol/L}$	Rayleigh fractionation	-3.07
Secondary Tien	1132 × 10 pillol/ 2	radyleigh mactionation	-2.38
Fe (II)-doped goethite	19 μmol/L	Rayleigh fractionation	-3.91
FeS	18 μmol/L	, 0	-2.11
green rust	11.5 μmol/L		-2.65
FeCO ₃	18.98 μmol/L		-2.67
ISRM zone sediments	23 μmol/L		-3.17
organic carbon	$104\times10^{10}~\mu mol/L$	Rayleigh fractionation	/
0.9 μmol H ₂ O ₂ , pH≈ 7	$8.65 \times 10^3 \mu mol/L$	Rayleigh fractionation	-4.2
13.2 μmol H_2O_2 , pH< 1		Equilibrium	-3.5
13.2 μmol H ₂ O ₂ , neutrality		fractionation	-5
		Rayleigh fractionation	
0.14 g/L nontronite, pH= 7.3	10 μmol/L	Rayleigh fractionation	-3.47~
0.14 g/L nontronite, pH= 5.5			- 4.19
0.73 g/L montmorillonite, pH= 7.3			-3.27~
0.73 g/L montmorillonite, pH= 5.5			- 3.66
			-1.29~
			- 4.9
			-1.98~
			-4.1
dissolved Fe (II) pH= 4.0 dissolved Fe (II) pH= 5.0 dissolved Fe	20–22 μmol/L	Rayleigh fractionation	-4.19
(II) $pH = 6.0$	-		-3.65
			-2.97

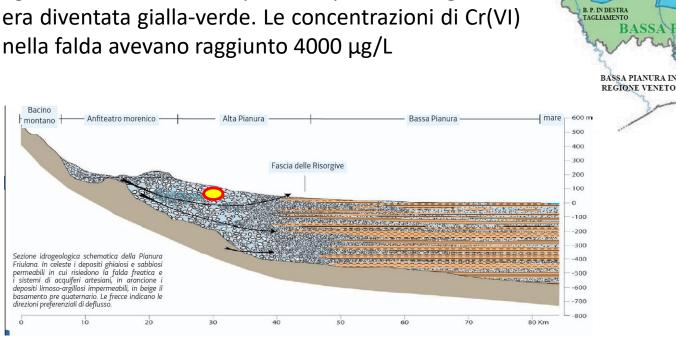
 $\varepsilon = (\alpha - 1)x10^3$


Fattore di frazionamento ϵ , riduzione batterica

Bacterial species	Experimental conditions	Initial concentration	Fractionation type	Fractionation factor (ϵ)
Shewanellaoneidensis MR-1	pH= 6.0-8.5	100 μmol/L	First stage	-2.37~- 3.04‰
	18–34 ℃		Second stage	-0.98~- 1.11%
Shewanellaoneidensis MR-1	Lactate (3.3–100 μmol/L)	5.1–9.5 μmol/L	Rayleigh fractionation	-4.5~- 4.1%
	Formate (6.8–60 µmol/L)	9.5 μmol/L		-4.5~- 4.0%
	Lactate (10200 μmol/L)			-1.8‰
Bacillus spQH-1	No glucose	19200 μmol/L	Rayleigh fractionation	-3.74‰
	100 μmol/L glucose, 37 °C			-1.94‰
	1000 µmol/L glucose, 37 ℃			-2.02‰
	2500 μmol/L glucose, 37 °C			-1.99‰
	10000 µmol/L glucose, 37 ℃			-1.92‰
	2500 μmol/L glucose, 4 °C			-7.62‰
	2500 µmol/L glucose, 15 ℃			-4.59‰
	2500 µmol∕L glucose, 25 °C			-3.09‰
P. stutzeri strain RCH ₂	Aerobic, lactate,20 μmol/L	50 μmol/L	Rayleigh fractionation	-2.0‰
	Denitrifying conditions, lactate, 20 µmol/L			-0.4‰
Geobactersulfurreducens	Acetate, 300 μmol/L	5 μmol/L	Rayleigh fractionation	$-3.03 \pm 0.12\%$
Pseudomonas stutzeri DCP-Ps1	Acetate, 300 μmol/L	5 μmol/L	Rayleigh fractionation	$3.14 \pm 0.13\%$
Desulfovibrio vulgaris	Pyruvate, 100 μmol/L	10 μmol/L	Rayleigh fractionation	$3.01 \pm 0.11\%$
Shewanellaoneidensis MR-1	No Fe	$20\times 10^6~\mu mol/L$	Rayleigh fractionation	$-2.47 \pm 0.07\%$
	Aqueous Fe (III)			$-2.34 \pm 0.07\%$
	Goethite			$-2.13 \pm 0.41\%$
	Hematie			$-2.27 \pm 0.29\%$
Pseudomonas fluorescens LB 300	No Fe	$20 \times 10^6 \ \mu mol/L$	Rayleigh fractionation	$-2.56 \pm 0.51\%$
	Aqueous Fe (III)			$-3.00 \pm 0.82\%$
	Goethite			$-2.96 \pm 0.19\%$
	Hematie			$-4.26 \pm 0.71\%$
	Aqueous Fe (II)			$-3.39 \pm 1.99\%$

δ^{53} Cr e destino del cromo nell'ecosistema superficiale

Valori di δ^{53} Cr in alcuni prodotti naturali ed antropici



Il δ^{53} Cr generalmente non permette la distinzione diretta tra sorgenti antropiche e naturali di Cr(VI)

Esempio: risorgenza della contaminazione

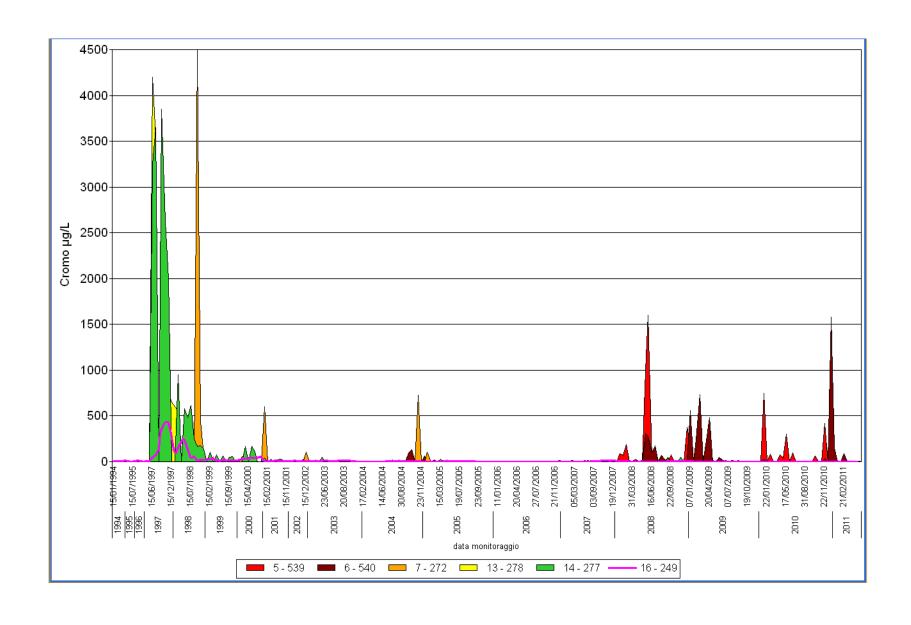
1997

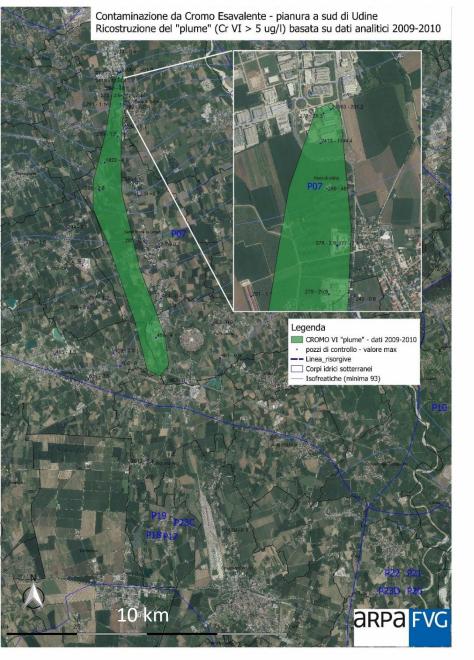
Pavia di Udine (regione Friuli VG). 1 km a valle di una ditta di cromature a spessore (Cromo Friuli Srl), un agricoltore nota che l'acqua di un pozzo di irrigazione era diventata gialla-verde. Le concentrazioni di Cr(VI) nella falda avevano raggiunto $4000~\mu g/L$

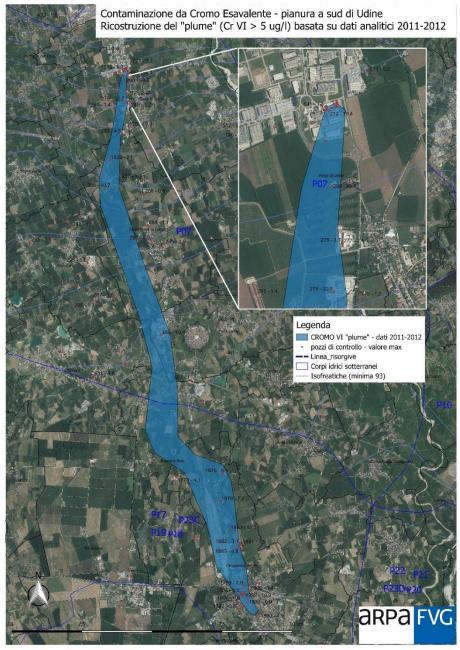
Il consorzio per l'acquedotto presenta denuncia contro ignoti per i superamenti dei limiti di potabilità nei pozzi a valle della zona contaminata.

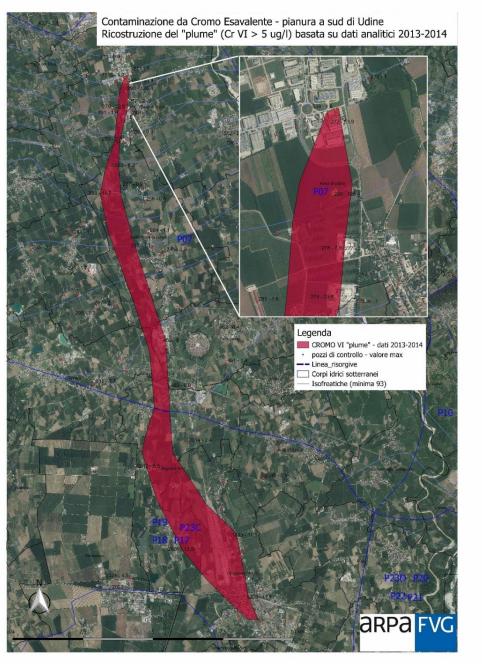
TAGLIAMENTO

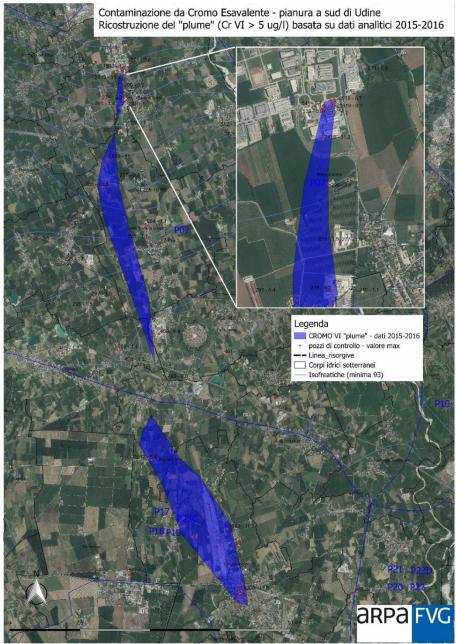
MARE ADRIATICO

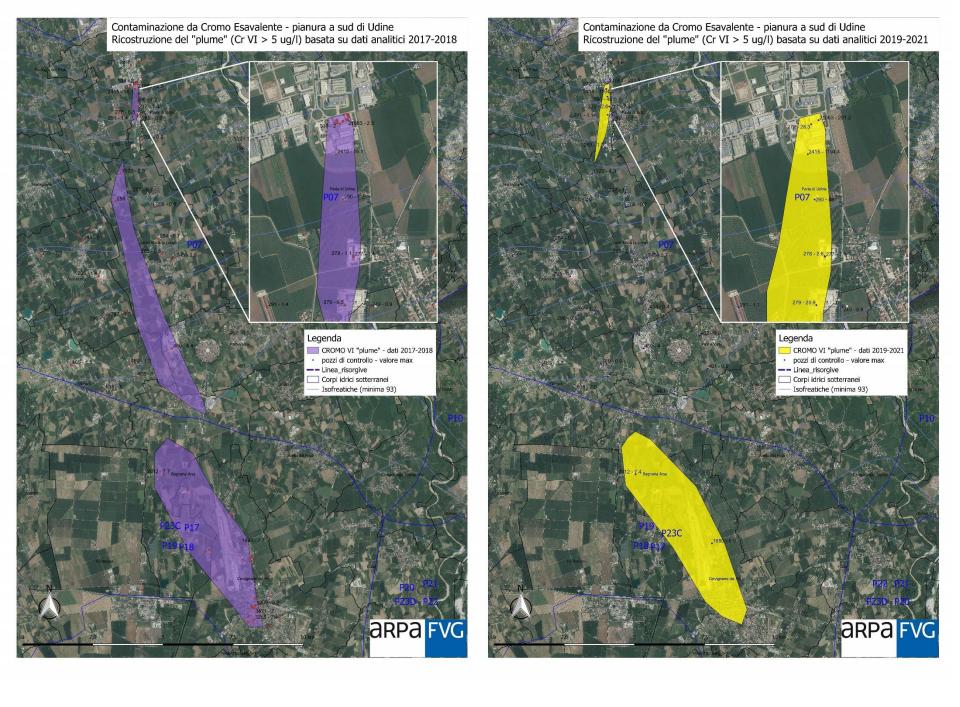

BACINO

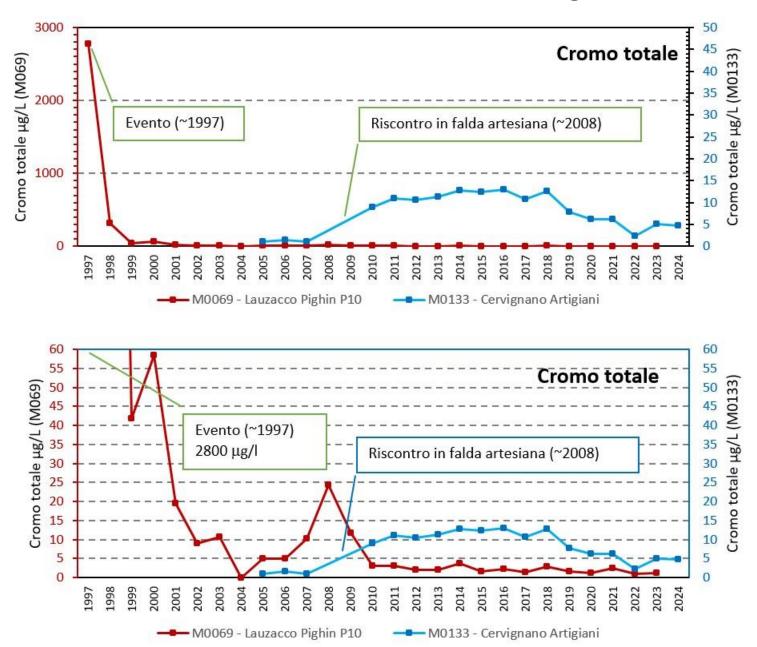

MONTANO ISONZO

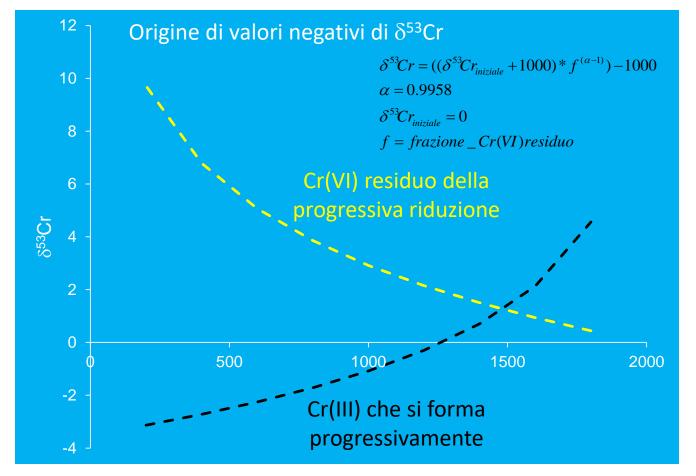

CELLINA-MEDUNA


A. P. IN DESTRA


Andamento della contaminazione



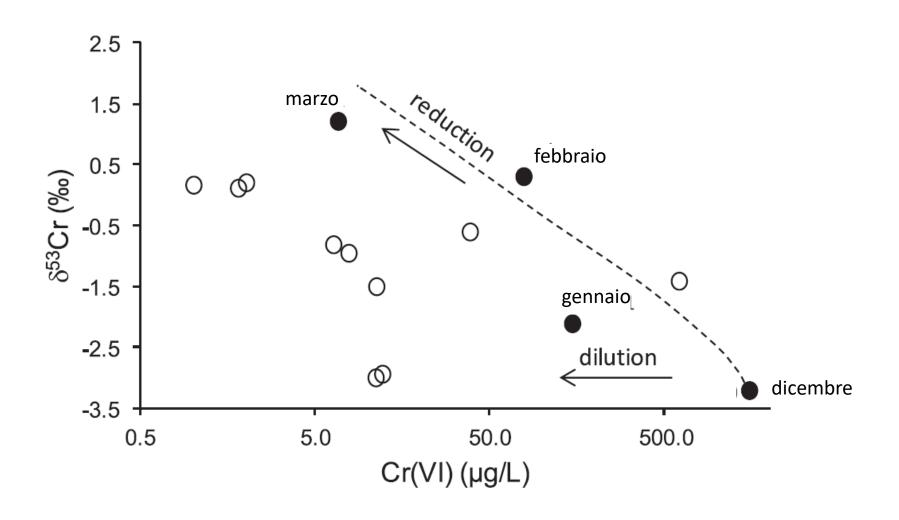


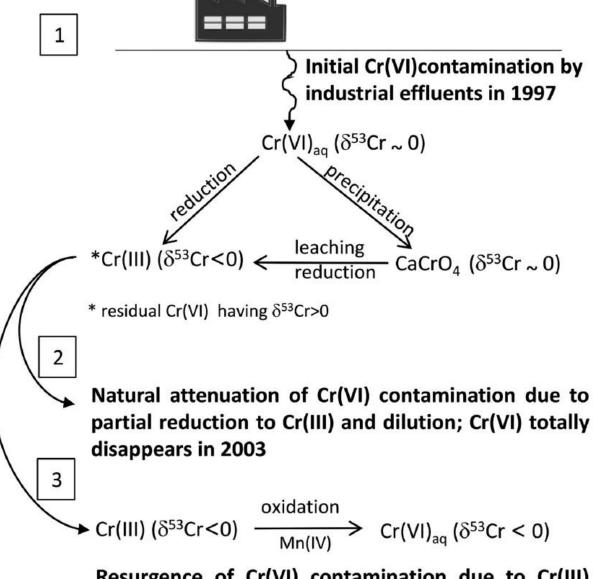


Andamento della contaminazione, dalle origini

Il Cr(VI) nelle acque di falda contaminate ha valori di δ^{53} Cr negativi

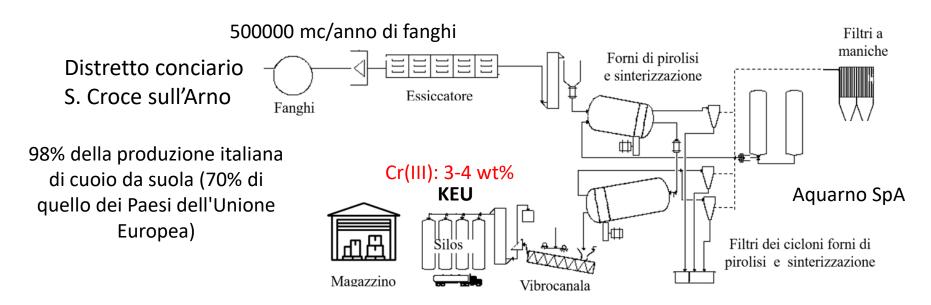
Frazionamento tipo Rayleigh


Il Cr(III) che si forma dalla riduzione di Cr(VI) può avere valori negativi di δ^{53} Cr


La sua ossidazione rilascia alla falda Cr(VI) con δ^{53} Cr <0

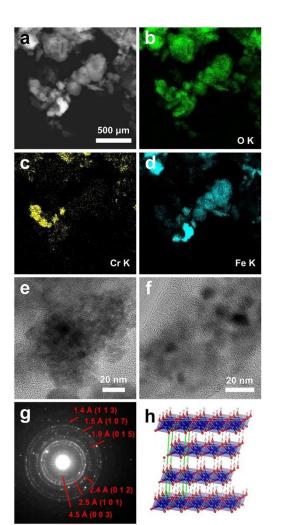
I dati isotopici indicano come sorgente del Cr(VI) l'ossidazione del Cr(III) presente nel sedimento e non la diretta immissione antropica

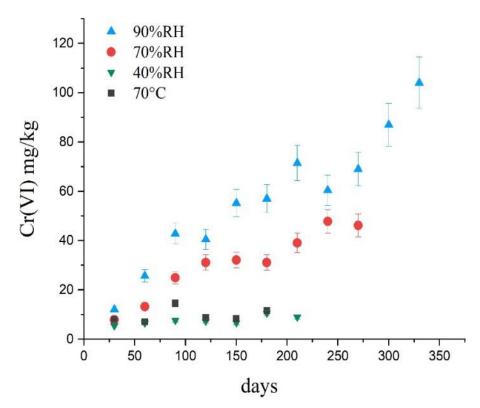
tuttavia


tale Cr(III) non è geogenico, ma è prodotto da fenomeni di riduzione di Cr(VI). Rappresenta quindi una risorgenza della originaria contaminazione

Resurgence of Cr(VI) contamination due to Cr(III) oxidation in 2008

Esempio: fanghi conciari. Il caso del KEU


Al momento della produzione, il KEU non contiene cromo esavalente, ottenendo la classificazione CER 19 01 12 ("ceneri pesanti e scorie diversa da..."; tipo di codice: non pericoloso, speculare). Sulla base di questa classificazione, il KEU è stato riciclato in ambiente come riempimento inerte di scavi, sottofondo stradale ed altro. Circa 150 mila tonnellate di materiale contenente KEU sono state distribuite nella sola regione Toscana.


I monitoraggi delle acque sotterranee effettuati da ARPAT hanno evidenziato concentrazioni di Cr(VI) superiori al limite nelle acque sotterranee delle aree dove era stato utilizzato il KEU.

Una serie di esperimenti hanno evidenziato che il KEU ha la capacità di generare cromo esavalente nella sua struttura con il trascorrere del tempo.

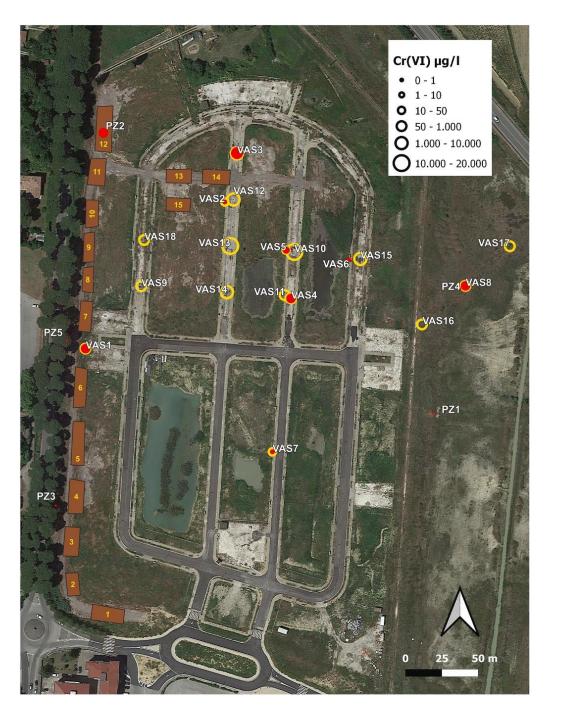
Questo effetto non è valutato nei test attuali di pericolosità dei rifiuti.

Il cromo esavalente che si genera nel KEU è facilmente lisciviabile.

possibile ossidazione del Cr(III) in flakes di grimaldiite formata nella fase di raffreddamento del KEU con acqua, favorita da umidità e presenza di ossigeno

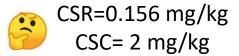
Green Park (Pontedera)

Esempio: Cr(VI) in un'area urbana



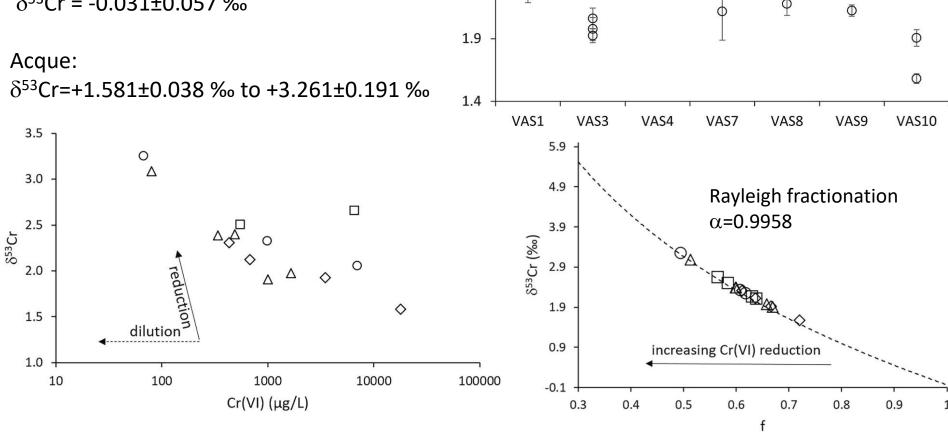
Green Park. Prossima costruzione!!

circa 8500 t di materiale contenente KEU sono state utilizzate per una pista di arrocco



Effetti del rilascio di Cr(VI) dal KEU

La concentrazione di Cr(VI) nel sistema di drenaggio delle acque meteoriche varia con il regime delle precipitazioni, fino ad un massimo di 18000 µg/L


Il Cr(VI) rilasciato alla fase acquosa è adsorbito dal suolo.

La concentrazione di Cr(VI) nel top soil varia da 1.5 a 31 mg/kg

KEU: δ^{53} Cr = -0.031±0.057 ‰

3.4

2.9

2.4 2.4 Φ

 Φ

Appl. Geochem. 168 (2024) 106129

Il Cr(III) nel KEU in condizioni ambientali (umidità e presenza di ossigeno) si ossida a Cr(VI)

Il Cr(VI) che si forma è lisciviabile

Nelle acque del sito Green Park il Cr(VI) rilasciato dal KEU raggiunge concentrazioni estremamente elevate

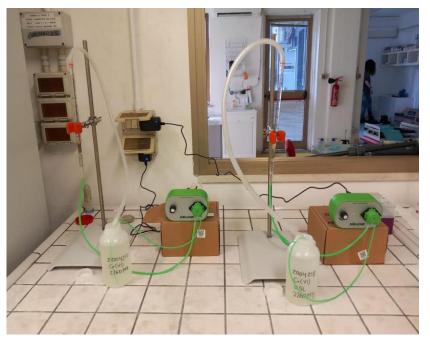
I dati isotopici indicano che sono attivi processi di riduzione. Considerando il fattore di frazionamento per un processo di riduzione mediato da batteri e abiotico [Fe(II)] la riduzione massima è nell'intervallo tra 47% e 72%

Gli isotopi del Cr indicano che, rimosse le sorgenti primarie, la tendenza dell'ecosistema è verso una mitigazione naturale della contaminazione da Cr(VI)

Esempio: trattamento di acque contaminate tramite zeoliti Fe-modificate

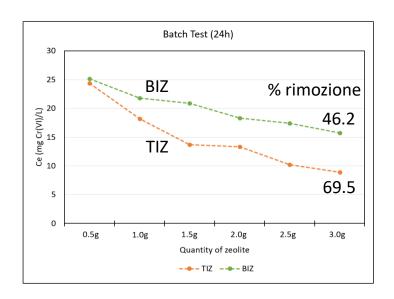
Natural zeolite clinoptilolite- Technical datasheet

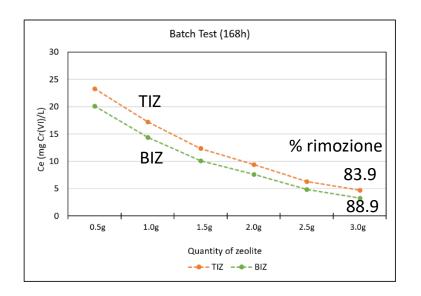
It is a technological additive, binding and anti-caking agent, adsorbent, 100% natural, composed of Clinoptilolite zeolite (an hydrated aluminosilicate) of sedimentary origin, characterised by possessing a crystalline structure and a high Cation Exchange Capacity (CSC).

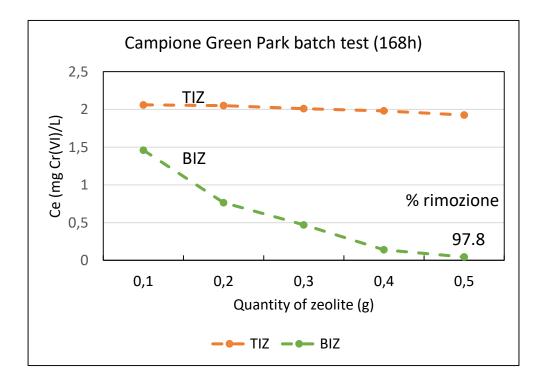

Name of material	Natural zeolite of sedimentary origin				
Name in chemistry	Aluminous hydrated silicate of alkali and alkaline earth metals				
Mineral form		Clinoptilolite			
Empirical formula	Ca _{1.8} K _{1.8} I	Ca _{1.8} K _{1.8} Na _{0.2} Mg _{0.2} Al ₆ Si ₃₀ O ₇₂ ·24H ₂ O			
General formula	(Ca, K ₂ , Na ₂ , Mg) ₄ Al ₈ Si ₄₀ O ₉₆ ·24H ₂ O				
	Chemical compo	sition			
SiO ₂	76,00-84,30%	MgO	0,60-1,20%		
Al ₂ O ₃	11,50-12,10%	Na ₂ O	0,20-1,30%		
CaO	2,70-5,20%	TiO ₂	0,10-0,30%		
K ₂ O	2,20-3,40%				
Fe ₂ O ₃	0,70-1,90%	Si/Al	4,80-5,40		
	Mineralogic comp	osition			
Clinoptilolite	90-92%	Plagioclase	1,0-2,0%		
Cristobalite	4%	Rutile	0,10-0,30%		
Mica clay	2%	Quartz	traces		

Saturazione dei siti di scambio di zeoliti naturali con Fe(II) (Liu et al., 2010).

Campione: BIZ

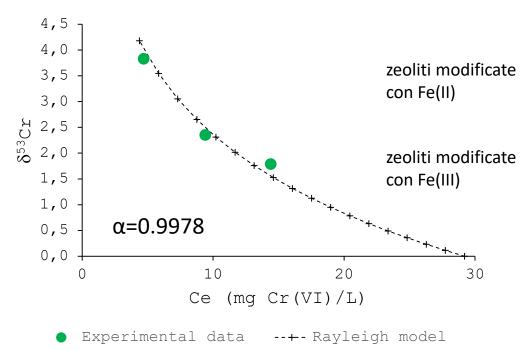

Precipitazione di Fe(III) sulla superficie di zeoliti naturali (DND Biotech).

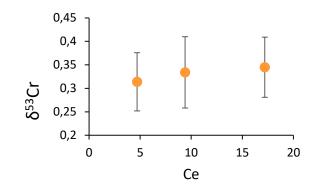

Campione: TIZ



Test batch e in colonna

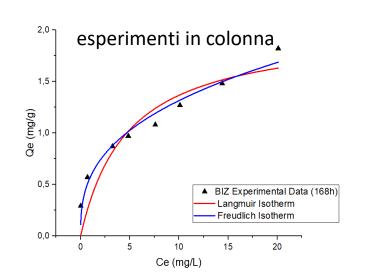
-soluzioni sintetiche di Cr(VI) (29.2; 2.14 mg/L) -campioni reali di acque contaminate (Green Park, 2.1 mg/L)




Efficazia nella rimozione di Cr(VI)

Indicazioni dagli isotopi del Cr

esperimenti in batch


Campione	Се	δ ⁵³ Cr	2 SD
	(mg/L)	(‰)	(‰)
BIZ 1g	14.4	1.790	0.064
BIZ 2g	7.60	2.354	0.056
BIZ 3g	3.25	3.834	0.093
TIZ 1g	17.2	0.345	0.064
TIZ 2g	9.40	0.334	0.076
TIZ 3g	4.70	0.314	0.062

Il fattore di frazionamento è coerente con la riduzione abiotica del Cr(VI) da parte di Fe(II)

I dati isotopici indicano che la maggiore efficacia delle zeoliti modificate con Fe(II) è attribuibile a processi di riduzione del Cr(VI) a Cr(III), poco solubile.

A questi si associa possibilmente la maggiore efficacia di adsorbimento

Grazie per l'attenzione

